Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 12(5)2022 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35625607

RESUMO

ABCA1 and ABCG1 are two ABC-transporters well-recognized to promote the efflux of cholesterol to apoAI and HDL, respectively. As these two ABC-transporters are critical to cholesterol metabolism, several studies have assessed the impact of ABCA1 and ABCG1 expression on cellular cholesterol homeostasis through ABC-transporter ablation or overexpressing ABCA1/ABCG1. However, for the latter, there are currently no well-established in vitro models to effectively induce long-term ABC-transporter expression in a variety of cultured cells. Therefore, we performed proof-of-principle in vitro studies to determine whether a LoxP-Stop-LoxP (LSL) system would provide Cre-inducible ABC-transporter expression. In our studies, we transfected HEK293 cells and the HEK293-derived cell line 293-Cre cells with ABCA1-LSL and ABCG1-LSL-based plasmids. Our results showed that while the ABCA1/ABCG1 protein expression was absent in the transfected HEK293 cells, the ABCA1 and ABCG1 protein expression was detected in the 293-Cre cells transfected with ABCA1-LSL and ABCG1-LSL, respectively. When we measured cholesterol efflux in transfected 293-Cre cells, we observed an enhanced apoAI-mediated cholesterol efflux in 293-Cre cells overexpressing ABCA1, and an HDL2-mediated cholesterol efflux in 293-Cre cells constitutively expressing ABCG1. We also observed an appreciable increase in HDL3-mediated cholesterol efflux in ABCA1-overexpressing 293-Cre cells, which suggests that ABCA1 is capable of effluxing cholesterol to small HDL particles. Our proof-of-concept experiments demonstrate that the LSL-system can be used to effectively regulate ABC-transporter expression in vitro, which, in turn, allows ABCA1/ABCG1-overexpression to be extensively studied at the cellular level.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Colesterol , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Colesterol/metabolismo , HDL-Colesterol/metabolismo , Células HEK293 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...